Search results for "LOCALIZED STRUCTURES"
showing 2 items of 2 documents
Dissipative solitons for mode-locked lasers
2012
International audience; Dissipative solitons are localized formations of an electromagnetic field that are balanced through an energy exchange with the environment in presence of nonlinearity, dispersion and/or diffraction. Their growing use in the area of passively mode-locked lasers is remarkable: the concept of a dissipative soliton provides an excellent framework for understanding complex pulse dynamics and stimulates innovative cavity designs. Reciprocally, the field of mode-locked lasers serves as an ideal playground for testing the concept of dissipative solitons and revealing their unusual dynamics. This Review provides basic definitions of dissipative solitons, summarizes their imp…
Phase-bistable patterns and cavity solitons induced by spatially periodic injection into vertical-cavity surface-emitting lasers
2014
Spatial rocking is a kind of resonant forcing able to convert a self-oscillatory system into a phase-bistable, pattern forming system, whereby the phase of the spatially averaged oscillation field locks to one of two values differing by $\ensuremath{\pi}$. We propose the spatial rocking in an experimentally relevant system---the vertical-cavity surface-emitting laser (VCSEL)---and demonstrate its feasibility through analytical and numerical tools applied to a VCSEL model. We show phase bistability, spatial patterns, such as roll patterns, domain walls, and phase (dark-ring) solitons, which could be useful for optical information storage and processing purposes.